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ABSTRACT: Nine sets of 36-h, 10-member, convection-allowing ensemble (CAE) forecasts with 3-km horizontal grid
spacing were produced over the conterminous United States for a 4-week period. These CAEs had identical configurations
except for their initial conditions (ICs), which were constructed to isolate CAE forecast sensitivity to resolution of IC per-
turbations and central initial states about which IC perturbations were centered. The IC perturbations and central initial
states were provided by limited-area ensemble Kalman filter (EnKF) analyses with both 15- and 3-km horizontal grid spac-
ings, as well as from NCEP’s Global Forecast System (GFS) and Global Ensemble Forecast System. Given fixed-resolution
IC perturbations, reducing horizontal grid spacing of central initial states improved ∼1–12-h precipitation forecasts. Con-
versely, for constant-resolution central initial states, reducing horizontal grid spacing of IC perturbations led to compara-
tively smaller short-term forecast improvements or none at all. Overall, all CAEs initially centered on 3-km EnKF mean
analyses produced objectively better ∼1–12-h precipitation forecasts than CAEs initially centered on GFS or 15-km EnKF
mean analyses regardless of IC perturbation resolution, strongly suggesting it is more important for central initial states to
possess fine-scale structures than IC perturbations for short-term CAE forecasting applications, although fine-scale pertur-
bations could potentially be critical for data assimilation purposes. These findings have important implications for future
operational CAE forecast systems and suggest CAE IC development efforts focus on producing the best possible high-
resolution deterministic analyses that can serve as central initial states for CAEs.

SIGNIFICANCE STATEMENT: Ensembles of weather model forecasts are composed of different “members” that,
when combined, can produce probabilities that specific weather events will occur. Ensemble forecasts begin from speci-
fied atmospheric states, called initial conditions. For ensembles where initial conditions differ across members, the ini-
tial conditions can be viewed as a set of small perturbations added to a central state provided by a single model field.
Our study suggests it is more important to increase horizontal resolution of the central state than resolution of the
perturbations when initializing ensemble forecasts with 3-km horizontal grid spacing. These findings suggest a potential
for computational savings and a streamlined process for improving high-resolution ensemble initial conditions.

KEYWORDS: Ensembles; Forecast verification/skill; Numerical weather prediction/forecasting; Model evaluation/
performance

1. Introduction

An ensemble of initial conditions (ICs) can be viewed as a
set of IC perturbations added to a deterministic model solu-
tion. In this framework, the deterministic solution serves as a
central initial state1 for the IC ensemble. Theoretically,

central initial states and IC perturbations can originate from
disparate sources with different underlying physics, dynamics,
and resolutions, which is common for convection-allowing
ensemble (CAE) applications. For example, CAE ICs have
regularly been constructed by adding perturbations derived
from relatively coarse analyses or short-term forecasts to com-
paratively higher-resolution deterministic analyses (e.g., Xue
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1 This deterministic central state is often, but not necessarily,
exactly the mean of the IC ensemble. For example, many analysis–
forecast systems using ensemble Kalman filters (EnKFs) produce
N-member analysis ensembles but only initialize “free forecasts” of
interest from M members, where M , N (e.g., Houtekamer et al.
2014; Schwartz et al. 2015a; Johnson et al. 2017; Zhou et al. 2017;
Gasperoni et al. 2020). Through EnKF equations, all N posterior

(after assimilation) ensemble members, including the subset of
M members, are naturally centered on the ensemble mean of the
N members (xN ). However, if only initializing free forecasts from
M members, the mean of the M-member IC ensemble (xM ) is
clearly not necessarily xN . Although differences between xN and
xM are small in equally likely, single-physics, single-dynamics
ensembles like those considered in this study, given the above
technical considerations, we prefer the term “central initial state”
instead of “mean initial state.”
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et al. 2008; Peralta et al. 2012; Kühnlein et al. 2014; Tennant
2015; Raynaud and Bouttier 2016, 2017; Hagelin et al. 2017;
Johnson and Wang 2020).

High-quality central initial states and IC perturbations are
both critical for producing skillful and reliable probabilistic
CAE forecasts. Central initial states establish an overall fore-
cast trajectory about which IC perturbations evolve (e.g.,
Ancell 2013) and IC perturbations are important contributors
to CAE spread, especially at short forecast ranges before lat-
eral boundary condition (LBC) or physics perturbations gen-
erate appreciable forecast diversity (e.g., Hohenegger et al.
2008; Vié et al. 2011; Peralta et al. 2012; Kühnlein et al. 2014;
Zhang 2019). Thus, to improve CAE forecasts, it is important
to improve both central initial states and IC perturbations.

One way to potentially realize these improvements is to
increase horizontal resolutions of central initial states and IC
perturbations to convection-allowing scales, as numerous
studies have indicated short-term (e.g., ∼1–12-h) convection-
allowing model forecasts are improved when initialized from
corresponding convection-allowing analyses, rather than from
coarser convection-parameterizing analyses (e.g., Ancell 2012;
Johnson et al. 2015; Johnson and Wang 2016; Schwartz 2016;
Lu et al. 2017; Gustafsson et al. 2018; Schwartz et al. 2021).
Given that central initial state and IC perturbation resolutions
can differ, it seems prudent to assess whether it is necessary
for both central initial states and IC perturbations to possess
convection-allowing horizontal grid spacing. In other words,
are CAE forecasts degraded if one of the IC components pos-
sesses convection-parameterizing, rather than convection-
allowing, resolution?

The answer to this question has important implications for
how next-generation CAEs, like NCEP’s ensemble-based
Rapid Refresh Forecast System (RRFS; Carley et al. 2021),
are designed. For example, substantial computational resour-
ces can potentially be saved if increasing central initial state
resolution to convection-allowing scales significantly improves
CAE forecasts but increasing IC perturbation resolution to
convection-allowing scales has comparatively smaller impacts.
In this case, RRFS development efforts can primarily be devoted
to producing high quality, convection-allowing, deterministic cen-
tral initial states about which relatively coarse and inexpensive
IC perturbations are centered.2 Conversely, if increasing IC per-
turbation resolution to convection-allowing scales is more impor-
tant, a stronger emphasis should be placed on developing a pure
ensemble-based convection-allowing data assimilation (DA) sys-
tem for the RRFS.

Although previous work has not directly assessed the rela-
tive benefits of increasing IC perturbation resolution versus
increasing central initial state resolution for CAE forecasting
applications, several recent studies touched on issues concern-
ing central initial states and IC perturbations for real-world

CAEs. For example, Schwartz et al. (2020, hereafter S20) sug-
gested CAE precipitation forecasts were more sensitive to
central initial states than IC perturbations. However, the three
sources of IC perturbations and two sources of central initial
states considered by S20 all possessed convection-parameteriz-
ing resolution and reflected vastly different underlying numeri-
cal weather prediction (NWP) models and DA systems. Thus,
it is unclear if S20’s findings would hold for finer-scale ICs or
in frameworks with more unified system configurations among
central initial states and IC perturbations.

In addition, Schwartz et al. (2021, hereafter S21) showed
that 3-km ensemble Kalman filter (EnKF; Evensen 1994;
Houtekamer and Zhang 2016) analyses initialized better
short-term 3-km CAE precipitation forecasts than down-
scaled 15-km EnKF analyses. S21’s 3-km EnKF ICs can be
viewed as 3-km IC perturbations centered on 3-km states (the
mean of the 3-km EnKF analysis members), while their
15-km EnKF ICs can be conceived as 15-km IC perturbations
centered on 15-km states (the mean of the 15-km EnKF anal-
ysis members). Therefore, S21’s experiments could not disen-
tangle precisely whether a specific component of the 3-km
EnKF}its higher-resolution central initial state or higher-
resolution IC perturbations}was responsible for yielding bet-
ter short-term forecasts than the 15-km EnKF.

Furthermore, Johnson and Wang (2020, hereafter JW20)
examined ten 18-h forecasts over a small (1200 km3 1200 km)
domain from CAEs centered about common 3-km initial
states but with different IC perturbations. Their results indi-
cated that 3-km IC perturbations led to better CAE forecasts
than IC perturbations derived from a 0.58 global ensemble.
However, benefits of higher-resolution IC perturbations
steadily decreased with forecast lead time and generally van-
ished beyond 12–15 h, potentially due to their small domain.
These findings were similar to Raynaud and Bouttier (2016),
who noted that 4-km IC perturbations yielded better 9–12-h
CAE forecasts than 15-km IC perturbations given common
2.5-km central initial states. While these collective results
suggest short-term CAE forecasts benefit from possessing
convection-allowing IC perturbations, neither Raynaud and
Bouttier (2016) nor JW20 concurrently examined CAE fore-
cast sensitivity to central initial state resolution.

Thus, to assess whether it is more important for IC pertur-
bations or central initial states to possess convection-allowing
horizontal grid spacing, we designed, executed, and evaluated
a series of CAE forecast experiments based upon S21’s
EnKFs. Sections 2 and 3 describe our experiments, while
section 4 presents results. Although our focus is on IC resolu-
tion requirements for CAE forecasting applications, there are
parallels between this topic and resolution requirements for
dual-resolution ensemble-based DA systems, which we dis-
cuss in section 5. Our overall conclusions (section 6) provide
guidance about how development efforts to improve CAE
ICs might best proceed.

2. Model and EnKF configurations

Thirty-six-hour (36-h), 10-member CAE forecasts were initial-
ized from 9 sets of ICs based on 3 sources of IC perturbations

2 Potential caveats: 1) Processes to generate IC perturbations
could be improved; and 2) even if IC perturbations can be coars-
ened without harming CAE forecasts, CAEs could be critical for
providing flow-dependent background error covariances within
convective-scale data assimilation systems. We discuss this possi-
bility more thoroughly in section 5a.
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and 3 sources of central initial states (section 3c). Eight of the IC
sets leveraged analyses produced by the continuously cycling
EnKF DA systems described by S21, who provided comprehen-
sive details and justifications for specific EnKF DA settings
(summarized in Table 1). Thus, only brief descriptions of EnKF
and NWP model configurations are provided here, with a more
thorough discussion reserved for how the nine sets of ICs were
constructed (section 3).

Specifically, S21 performed two limited-area continuously
cycling DA experiments using a square root form of the
EnKF (Anderson 2001) implemented within the Data Assimi-
lation Research Testbed software (Anderson et al. 2009).
Both EnKFs used 80 ensemble members and produced analy-
ses every hour between 0000 UTC 23 April and 0000 UTC
20 May 2017 (inclusive; 649 hourly cycles). As noted by S21,
this experimental period featured a variety of flow patterns
and several heavy precipitation episodes primarily driven by
strong synoptic forcing. Both EnKFs assimilated approxi-
mately 30 000–100 000 observations each cycle, and the first
two days of cycling (i.e., 23 and 24 April) were regarded as
spinup where model solutions moved away from randomly
perturbed initial states prescribed at 0000 UTC 23 April 2017.
S21 demonstrated that two days was a sufficiently long spinup
period.

One EnKF experiment produced analyses solely on a
15-km computational domain (Figs. 1 and 2a), while the
second produced analyses on both 15- and 3-km domains
(Figs. 1 and 2b). To advance the 80-member ensemble states
between hourly analyses, version 3.9.1.1 of the Advanced

Research version of the Weather Research and Forecasting
(WRF) Model (Skamarock et al. 2008; Powers et al. 2017)
was used. WRF Model physical parameterizations (Table 2)
were identical across all 80 ensemble members and the two

TABLE 1. Summary of continuously cycling EnKF configurations. See S21 for justifications for these settings.

Parameter Setting

EnKF algorithm Ensemble adjustment Kalman filter (EAKF; Anderson 2001, 2003;
Anderson and Collins 2007)

Ensemble size 80 members
Cycling period 1 h
Updated WRF Model variables Zonal and meridional wind components; perturbation geopotential height,

potential temperature, and dry surface pressure; and water vapor,
graupel, snow, and rain mixing ratios

Localization function Eq. (4.10) from Gaspari and Cohn (1999)
Horizontal localization full width For 15-km EnKF analyses, 1280 km for all observations; for 3-km EnKF

analyses, 640 km, except 1280 km for rawinsonde observations
Vertical localization full width 1.0 scale height
Sampling error correction Anderson (2012)
Inflation method Posterior relaxation-to-prior spread (RTPS; Whitaker and Hamill 2012)
Inflation factor 1.06
Lateral boundary condition perturbations Random perturbations based on Gaussian noise added to GFS analyses

and forecasts (e.g., Torn et al. 2006)
Sea surface temperature updates Daily updates from NCEP’s 0.128 analyses (e.g., Gemmill et al. 2007)
Assimilated observations Rawinsonde, aircraft, wind profiler, satellite-tracked wind, global

positioning system radio occultation (GPSRO), and surface
observations

Observation errors and time windows Based on the High-Resolution Rapid Refresh Ensemble (HRRRE;
Dowell et al. 2016, 2022)

Horizontal thinning for aircraft and satellite-tracked
wind observations

30 km for 15-km EnKF analyses; 15 km for 3-km EnKF analyses

Vertical thinning for aircraft and satellite-tracked
wind observations

25 hPa

FIG. 1. Computational domain. Horizontal grid spacing was
15 km in the outer domain (415 3 325 points) and 3 km in the nest
(15813 986 points). Lateral boundary conditions (LBCs) provided
by global models were applied to the 15-km domain, which in turn
provided LBCs for the 3-km domain. Objective precipitation verifi-
cation only occurred within the red shaded region of the 3-km
domain (CONUS east of 1058W).
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domains, except no cumulus parameterization was employed
on the convection-allowing 3-km grid. In the nested 15-/3-km
EnKF DA system (Fig. 2b), 1-h WRF Model forecasts
between analyses were one-way nested, ensuring that the
15-km EnKF was unaffected by the 3-km EnKF (i.e., 15-km
fields in the nested- and single-domain EnKF DA systems
were identical). Both EnKFs performed well, yielding
acceptable spread–error relationships (e.g., Houtekamer et al.
2005) and similar model climates that were stable through-
out the 4 weeks of continuous cycling (see Figs. 5 and 6
in S21).

The 15- and 3-km EnKFs had very similar configurations,
but they differed in terms of their horizontal localization
for non-rawinsonde observations and horizontal thinning of
satellite-tracked wind and aircraft observations (Table 1). As
noted by S21, the smaller horizontal localization in the 3-km
EnKF was used to lessen computational expense, and the

different horizontal observation thinnings were chosen “so
the 15- and 3-km EnKFs had equal numbers of satellite-
tracked wind and aircraft observations within their respective
horizontal localization radii” (S21). Appendix A shows that
differences regarding horizontal localization and observation
thinning were not responsible for differences in 15- and 3-km
EnKF performance.

3. Experimental design

Analysis ensembles from the 15- and 3-km EnKFs at
0000 UTC (i.e., red boxes in Fig. 2) were used to derive cen-
tral initial states and IC perturbations for various CAEs.
Operational global models were also used as sources of IC
perturbations and central initial states.

Ultimately, 3-km precipitation forecasts initialized at 0000 UTC
from various sets of ICs were verified over the conterminous

FIG. 2. Flowcharts of continuously cycling EnKF data assimilation systems over (a) solely
the 15-km computational domain (i.e., outer domain in Fig. 1) and (b) both the 15- and 3-km
computational domains (i.e., both domains in Fig. 1). Posterior ensembles (red shaded boxes)
at 0000 UTC were used to construct initial conditions for CAE forecasts. In the nested-domain
15-/3-km EnKF data assimilation system, the 15-km domain provided lateral boundary condi-
tions for the 3-km domain during WRFModel forecasts.
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United States (CONUS) east of the Rockies (Fig. 1), where val-
idation data are most robust (discussed further in section 4a).
Employing a nested WRF Model configuration provided
a computationally affordable way to place this evaluation
region far from lateral boundaries to minimize LBC impacts
(e.g., Warner et al. 1997). However, using a nested configu-
ration required ICs to be constructed for both the 15- and
3-km domains, which somewhat complicated the experimen-
tal design. While we offer some remarks about initializing
the 15-km domain in upcoming subsections, the primary
function of the 15-km domain was to provide LBCs for the
3-km domain, and the most important aspect of the experi-
mental design concerned how ICs were produced for the
3-km domain. Note that ICs for the 3-km domain did not
have to possess 3-km horizontal grid spacing, as coarser
fields could be downscaled onto the 3-km grid, as described
below.

a. Central initial states for the 3-km domain

Central initial states for the 3-km domain were provided by
three sources. One source was 3-km EnKF mean analyses
(x3km), given by

x3km 5
1
80

∑80

i 5 1
x3kmi , (1)

and another source was 15-km EnKF mean analyses (x15km),
given by

x15km 5
1
80

∑80

i 5 1
x15kmi , (2)

where x15kmi and x3kmi denote 15- and 3-km EnKF analyses for
the ith of 80 ensemble members, respectively.3 Operational
Global Forecast System (GFS) analyses (xGFS) with 0.258

horizontal grid spacing4 also served as central initial states for
the 3-km domain. From a spectral perspective using the dis-
crete cosine transform (Denis et al. 2002), all three sources of
central initial states were usually similar on mutually resolv-
able scales, with the largest differences at scales , 100 km
that were not resolvable by all analyses (Fig. 3). In addition to
providing central states for CAE ICs, x3km , x15km , and xGFS

were used to initialize deterministic forecasts (section 4b).
Differences between 15- and 3-km EnKF mean analyses

were attributable to differences in horizontal grid spacing and
associated representation of convection (parameterized ver-
sus explicit). Conversely, because GFS and limited-area
EnKF analyses reflected entirely different NWP models and
DA systems, differences between GFS and limited-area
EnKF mean analyses were potentially due to many factors
other than disparities in resolution and associated treatment
of convection. Nonetheless, employing GFS analyses as a
source of central initial states was useful for examining
whether CAE forecast sensitivity to IC perturbations depends
on the central initial state and provides insights about whether
there are benefits of using limited-area EnKFs to generate
central initial states relative to adopting those given by a well-
tuned operational global analysis system.

While 3-km EnKF analyses were dynamically consistent
with the 3-km CAE forecast model, 15-km EnKF analyses,
and especially GFS analyses, were not. Thus, differences
regarding dynamical consistency between the various central
initial states and the CAE forecast model may impact results,
in addition to differences in IC resolution. It is difficult to dis-
entangle the influence of these two factors (dynamical consis-
tency and IC resolution) in our experimental framework, in
particular when comparing CAEs with GFS central initial
states to CAEs with limited-area EnKF central initial states.
However, the extent to which 15- and 3-km EnKF-based ICs
were dynamically consistent with the CAE forecast model
was a direct consequence of horizontal resolution (i.e., 15-km
EnKF analyses were dynamically inconsistent with the 3-km
CAE forecast model by virtue of their 15-km grid spacing).

TABLE 2. WRF Model settings used for the EnKFs and CAE forecasts.

Parameter WRF Model setting

Model version Version 3.9.1.1 of the Advanced Research WRF Model
Horizontal grid spacing 15 and 3 km in the outer and inner domains, respectively
Time step 60 and 12 s in the 15- and 3-km domains, respectively
Number of vertical levels 51 (based on the Rapid Refresh model; Benjamin et al. 2016)
Model top 15 hPa
Microphysics parameterization Thompson (Thompson et al. 2008)
Longwave and shortwave radiation parameterizations Rapid Radiative Transfer Model for Global Climate Models

(RRTMG) with ozone and aerosol climatologies (Mlawer
et al. 1997; Iacono et al. 2008; Tegen et al. 1997)

Planetary boundary layer parameterization Mellor–Yamada–Janjić (MYJ) (Mellor and Yamada 1982;
Janjić 1994, 2002)

Land surface model Noah (Chen and Dudhia 2001)
Cumulus parameterization Tiedtke (15-km domain only; Tiedtke 1989; Zhang et al. 2011)

3 Although we refer to EnKF ensemble means (e.g., x3km) as
possessing identical resolutions to individual ensemble members
(e.g., x3kmi ), ensemble means are effectively coarser than individ-
ual ensemble members because of spatial smoothing inherent in
ensemble averaging (e.g., Leith 1974; Surcel et al. 2014).

4 The GFS had approximately 13-km horizontal grid spacing,
but data available to us were coarsened to 0.258 by NCEP.
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Therefore, we attribute differences between CAEs with com-
mon IC perturbations but 15- or 3-km EnKF-based central
initial states to the different central initial state resolutions.

b. IC perturbations for the 3-km domain

IC perturbations for the 3-km domain were derived from
three sources, including both 15- and 3-km EnKF analysis
ensembles (e.g., Fig. 2), given by

dx15kmi 5 x15kmi 2 x15km ; and (3)

dx3kmi 5 x3kmi 2 x3km , (4)

where dx15kmi and dx3kmi , respectively, denote 15- and 3-km
posterior (after assimilation) EnKF perturbations for the ith
ensemble member. Although Eqs. (3) and (4) were valid for
i 5 1, … , 80, IC perturbations from just members 1–10 were
required because CAE forecasts only had 10 members

(as explained in section 3d). Thus, there was some uncertainty
about whether EnKF-based IC perturbations should be com-
puted with respect to the mean of all 80 posterior members
[as in Eqs. (3) and (4)] or just the mean of posterior members
1–10. However, auxiliary experiments revealed that CAE
forecasts were insensitive to whether IC perturbations were
computed with respect to the mean of posterior members
1–80 or 1–10 (not shown).

ICs from NCEP’s operational 0.58 Global Ensemble Forecast
System (GEFS; Zhou et al. 2017) provided the third source of
IC perturbations for the 3-km domain.5 Specifically, perturba-
tions for the ith GEFS member (dxGEFS

i ) were given by

dxGEFS
i 5 xGEFS

i 2 xGEFS , (5)

FIG. 3. Power spectra of 3-km EnKFmean analyses (purple), 15-km EnKF mean analyses (orange), and GFS analy-
ses (green) as a function of wavelength (km) for (a) 250-hPa zonal wind (m2 s22), (b) 500-hPa meridional wind
(m2 s22), (c) 850-hPa dewpoint temperature (K2), and (d) 2-m temperature (K2) averaged over all 0000 UTC analyses
between 25 Apr and 20 May 2017 (inclusive). To compute spectra from the various datasets, all fields were interpo-
lated onto the 3-km domain (Fig. 1). Spectra were then computed over the geographic area covered by the 3-km
domain, excluding points within 45 km of each lateral boundary. The discrete cosine transform (Denis et al. 2002) was
used to compute spectra and spectral variance binning employed the method of Ricard et al. (2013). Dashed purple,
orange, and green vertical lines denote effective resolutions of 3-km EnKF mean analyses, 15-km EnKF mean analy-
ses, and GFS analyses, respectively, which were approximately 7 times the horizontal grid spacing for the WRF-based
EnKFs (e.g., Skamarock 2004) and approximately 10 times the horizontal grid spacing for the GFS (e.g., Ji et al.
2016). The y-axis values are different in each panel.

5 The GEFS had approximately 34-km horizontal grid spacing,
but data available to us were coarsened to 0.58 by NCEP.
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where xGEFS
i denotes GEFS ICs for the ith ensemble member

(for i5 1, … , 10) and

xGEFS 5
1
10

∑10

i 5 1

xGEFS
i : (6)

While the GEFS had 20 perturbation members during our
experimental period (April–May 2017), as with the limited-area
EnKF perturbations, GEFS-based IC perturbations were derived
for just perturbation members 1–10, again because subsequent
CAE forecasts only had 10 members. Like the 15- and 3-km IC
perturbations, GEFS IC perturbations were EnKF based, and,
thus, flow dependent (Zhou et al. 2017).

The 15-km EnKF IC perturbations had more energy than
3-km EnKF IC perturbations at most mutually resolvable
scales (Fig. 4), possibly due to the 15-km EnKF’s use of cumu-
lus parameterization that may impart a large-scale structure
to the errors (e.g., Torn and Davis 2012; Romine et al. 2013;

Mahoney 2016; Wong et al. 2020), whereas the 3-km EnKF
was convection-allowing. However, 3-km IC perturbations
had the most power at scales , 100 km. Differences between
15- and 3-km EnKF IC perturbation power spectra were
typically small compared to their collective differences with
respect to GEFS IC perturbation power spectra, which had
the most perturbation energy at scales . 1000 km. Similarly,
differences of domain-average spread between 15- and
3-km posterior ensembles were small compared to differ-
ences between EnKF and GEFS IC ensembles, the latter of
which had uniformly smaller spreads except for low-level
temperature6 (Fig. 5).

FIG. 4. Perturbation power spectra of 3-km EnKF analysis ensembles (purple), 15-km EnKF analysis ensembles
(orange), and GEFS initial condition ensembles (green) as a function of wavelength (km) for (a) 250-hPa zonal wind
(m2 s22), (b) 500-hPa meridional wind (m2 s22), (c) 850-hPa dewpoint temperature (K2), and (d) 2-m temperature
(K2) averaged over all ensemble perturbations and all 0000 UTC analyses between 25 Apr and 20 May 2017 (inclu-
sive). Perturbations were defined with respect to the ensemble mean. To compute spectra from the various datasets,
all fields were interpolated onto the 3-km domain (Fig. 1). Spectra were then computed over the geographic area cov-
ered by the 3-km domain, excluding points within 45 km of each lateral boundary. The discrete cosine transform
(Denis et al. 2002) was used to compute spectra, and spectral variance binning employed the method of Ricard et al.
(2013). Dashed purple, orange, and green vertical lines denote effective resolutions of the 3-km ensemble, 15-km
ensemble, and GEFS, respectively, which were approximately 7 times the horizontal grid spacing for the WRF-based
ensembles (e.g., Skamarock 2004) and approximately 10 times the horizontal grid spacing for the GEFS (e.g., Ji et al.
2016). The y-axis values are different in each panel.

6 This enhanced low-level temperature spread from GEFS IC
perturbations exclusively occurred over the high plains adjacent to
the Rocky Mountains and other regions of the intermountain
western CONUS for reasons that are unclear.
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c. IC construction

At 0000 UTC daily between 25 April and 20 May 2017
(inclusive), each of the three sets of IC perturbations
[Eqs. (3)–(5)] was re-centered about each of the three sets of
central initial states [Eq. (1), Eq. (2), and GFS analyses
(xGFS)], yielding nine sets of IC ensembles that differed by
their IC perturbations and central initial states (Tables 3
and 4). While re-centering is a common CAE initialization
technique (e.g., Xue et al. 2008; Kong et al. 2008, 2009; Peralta
et al. 2012; Kühnlein et al. 2014; Tennant 2015; Johnson and
Wang 2016; Raynaud and Bouttier 2016, 2017; Hagelin et al.
2017; JW20; S20), an alternative way of assessing forecast sen-
sitivity to IC resolution would be to remove small-scale features
from 3-km EnKF posterior ensembles with a low-pass filter to
produce coarser central initial states and IC perturbations (e.g.,

Potvin et al. 2017; JW20). Although this method is elegant, we
did not apply filtering to construct ICs with varied resolutions
because re-centering has greater relevance within operational
environments, where output from multiple modeling systems
with different resolutions is typically available. Furthermore,
re-centering is common within operational DA systems (e.g.,
Clayton et al. 2013; Wang et al. 2013).

Similar to S20 and Peralta et al. (2012), only zonal and
meridional wind, potential temperature, water vapor mixing
ratio, and perturbation geopotential and dry surface pressure7

(U, V, u, qy, f, and m, respectively) were re-centered when

FIG. 5. Average standard deviation over the geographic area covered by the 3-km domain (Fig. 1) and all 0000 UTC
3-km EnKF analysis ensembles (purple), 15-km EnKF analysis ensembles (orange), and GEFS IC ensembles (green)
between 0000 UTC 25 Apr and 0000 UTC 20May 2017 (inclusive) for (a) zonal wind (m s21), (b) meridional wind (m s21),
(c) temperature (K), and (d) water vapor mixing ratio (g kg21). The x-axis values are different in each row.

7 Perturbation geopotential and dry surface pressure were
defined relative to a base state per the WRF Model formulation
(Skamarock et al. 2008).
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constructing ICs for the ith ensemble member. All other fields
for the ith member’s ICs, like hydrometeors, were provided
by the corresponding member of either the 15- or 3-km poste-
rior ensemble depending on the finest-resolution field used to
construct a specific set of ICs. For example, for ICs with either
3-km central initial states or 3-km IC perturbations, initial
microphysics states for the ith member were provided by the
corresponding member of the 3-km posterior ensemble (i.e.,
x3kmi ). Similarly, for ICs where the finest resolution among
central initial states and IC perturbations was 15 km, initial
microphysics states for the ith member were provided by the
corresponding member of the 15-km posterior ensemble (i.e.,
x15kmi ). We used variables from ensemble members for these
fields to provide IC diversity, rather than forcing these other
variables to common values provided by deterministic central
initial states. However, initialization of these auxiliary fields
likely has little forecast impact, as S20 suggested that precipi-
tation forecasts over the CONUS east of the Rockies were

more sensitive to IC perturbation characteristics of U, V, u,
qy, f, and m than initial hydrometeor states.

1) ICS BASED SOLELY ON LIMITED-AREA ENKF
ANALYSES

Four sets of ICs were based solely on 0000 UTC limited-
area EnKF analyses and are henceforth collectively referred
to as the “EnKF-only” experiments (bold experiments in
Table 3). Because the nested-domain EnKF employed one-
way nesting (section 2, Fig. 2b), ICs for the 15-km domain
across all EnKF-only experiments were identical, namely,
0000 UTC 15-km EnKF analysis ensembles (i.e., x15kmi ).
Thus, CAE forecast differences among the four EnKF-only
experiments were solely due to how the 3-km domain (Fig.
1) was initialized at 0000 UTC.

The most straightforward EnKF-based ICs for the 3-km
domain were provided by 3-km EnKF analysis members (i.e.,
x3kmi ), which are 3-km EnKF analysis perturbations centered on
3-km EnKF mean analyses (“3kmCent_3kmPert”; Tables 3
and 4). Initial states for the 3-km domain were also provided
by downscaling 15-km EnKF analysis members (i.e., x15kmi )
onto the 3-km computational domain (“15kmCent_15kmPert”;
Tables 3 and 4). The downscaling process, achieved through a
monotone interpolation scheme (Smolarkiewicz and Grell
1992) per WRF Model defaults (Skamarock et al. 2008), does
not add detail, so even though downscaled 15-km fields resided
on the 3-km grid, the ICs still possessed spatial resolution asso-
ciated with their native 15-km horizontal grid spacing.

The final two sets of ICs for the 3-km domain within the
EnKF-only experiments had mixed resolutions of IC pertur-
bations and central initial states. In one set, the 3-km domain
was initialized by re-centering downscaled 15-km EnKF anal-
ysis perturbations [i.e., Eq. (3)] about 3-km EnKF mean anal-
yses (“3kmCent_15kmPert”; Tables 3 and 4). The other set
was produced by re-centering 3-km EnKF analysis perturba-
tions [i.e., Eq. (4)] about downscaled 15-km EnKF mean anal-
yses (“15kmCent_3kmPert”; Tables 3 and 4).

Because 3-km IC ensembles can be averaged to create
3-km central initial states [e.g., Eq. (1)], a configuration like
15kmCent_3kmPert would be unlikely within operational

TABLE 3. Experiment names and their corresponding central initial states (columns) and IC perturbations (rows) for the 3-km
domain. All IC sets were constructed at 0000 UTC each day during the experimental period. Bolded experiments denote the four
“EnKF-only” experiments, while italicized experiments denote the four “EnKF1Global” experiments.

Central initial state for the 3-km domain

3-km EnKF mean
analyses

15-km EnKF mean
analyses downscaled
onto the 3-km domain

0.258 GFS analyses
downscaled onto
the 3-km domain

IC perturbations for
the 3-km domain

3-km EnKF analysis
perturbations

3kmCent_3kmPert 15kmCent_3kmPert GFSCent_3kmPert

15-km EnKF analysis
perturbations downscaled
onto the 3-km domain

3kmCent_15kmPert 15kmCent_15kmPert GFSCent_15kmPert

0.58 GEFS IC perturbations
downscaled onto the 3-km
domain

3kmCent_GEFSPert 15kmCent_GEFSPert GFSCent_GEFSPert

TABLE 4. Mathematical expressions for the ith ensemble
member’s ICs for the 3-km domain in the various experiments.
Term D represents a downscaling operator within the WRF
Model that remaps fields with horizontal grid spacing coarser
than 3 km (e.g., 15-km EnKF analyses) onto the 3-km
computational domain. Terms x15kmi and x3kmi denote 15- and
3-km EnKF analyses for the ith ensemble member, respectively,
and xGFS denotes GFS analyses. All other terms are defined in
Eqs. (1)–(5).

Experiment name

Expression for the ith
ensemble member’s ICs
for the 3-km domain

3kmCent_3kmPert x3km 1 dx3kmi
3kmCent_15kmPert x3km 1Ddx15kmi
3kmCent_GEFSPert x3km 1DdxGEFS

i
15kmCent_3kmPert Dx15km 1 dx3kmi
15kmCent_15kmPert Dx15km 1Ddx15kmi
15kmCent_GEFSPert Dx15km 1DdxGEFS

i
GFSCent_3kmPert DxGFS 1 dx3kmi
GFSCent_15kmPert DxGFS 1Ddx15kmi
GFSCent_GEFSPert DxGFS 1DdxGEFS

i
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environments. However, this experiment was helpful for
elucidating whether it is more important for central initial
states or IC perturbations to possess convection-allowing hor-
izontal grid spacing, as CAE forecast differences between
15kmCent_3kmPert and 15kmCent_15kmPert were solely
attributable to IC perturbation resolution for the 3-km
domain and 15kmCent_3kmPert and 3kmCent_3kmPert only
differed regarding central initial state resolution.

2) ICS BASED ON A COMBINATION OF LIMITED-AREA

ENKF ANALYSES AND GLOBAL FIELDS

The four EnKF-only experiments suffice to disentangle
whether it is more critical for central initial states or IC per-
turbations to possess convection-allowing horizontal grid
spacing. However, as noted earlier, initial states for the 3-km
domain were also produced by leveraging GFS and GEFS
fields, allowing us to assess whether ICs partially derived from
readily available operational data can yield similar quality
CAE forecasts as ICs derived solely from limited-area EnKFs.
Comparing CAEs with GEFS and 3-km EnKF IC perturba-
tions also replicates some of JW20’s analyses, but with a
larger sample size and evaluation domain. Furthermore,
incorporating GFS and GEFS states into the experiments
provides further insights about whether CAE forecast sensi-
tivity to IC perturbation and central initial state resolution
varies depending on whether global fields are a component of
CAE ICs.

Specifically, another four sets of ICs for the 3-km domain
were constructed from 0000 UTC fields that relied in part on
the GFS or GEFS and are collectively referred to as the
“EnKF1Global” experiments (italicized experiments in Table 3).
Two sets of ICs for the 3-km domain were produced by re-
centering downscaled perturbations derived from GEFS
ICs [Eq. (5)] about 15- and 3-km EnKF mean analyses
(“3kmCent_GEFSPert” and “15kmCent_GEFSPert”; Tables 3
and 4). The other two sets of ICs for the 3-km domain were
produced by re-centering 15- and 3-km EnKF analysis per-
turbations [Eqs. (3) and (4)] about downscaled GFS analyses
(“GFSCent_3kmPert” and “GFSCent_15kmPert”; Tables 3
and 4).

Introducing global fields poses somewhat of a dilemma:
should GFS and GEFS fields participate in re-centering only
for purposes of initializing the 3-km domain or for purposes
of initializing both the 15- and 3-km domains (Fig. 1)? The
former would mean all four EnKF1Global experiments have
identical ICs for the 15-km domain that are equal to those of
the EnKF-only experiments (i.e., x15kmi ). Conversely, the lat-
ter would maintain consistency across both domains, which
intuitively seems desirable. However, in this latter scenario,
3-km forecasts from the four EnKF1Global experiments
could potentially be sensitive to LBCs inherited from differ-
ent 15-km forecasts. Likewise, 3-km forecasts from the
EnKF1Global experiments could potentially differ from
those produced by the EnKF-only experiments because of dif-
ferent 15-km forecasts.

To address this conundrum, we performed several explor-
atory experiments where pairs of experiments solely differed

by either their ICs for the 15-km domain or ICs for the 3-km
domain. Findings revealed that 3-km precipitation forecasts
were far more sensitive to ICs for the 3-km domain than ICs
for the 15-km domain. Moreover, S21 arrived at similar con-
clusions (see their footnote 3). Therefore, ICs for the 15-km
domain appeared to have little impact on 3-km forecasts, and
differences between various 3-km CAE forecasts were attrib-
uted to different ICs for the 3-km domain. Ultimately, we
chose to maintain consistency across both domains, so GEFS
IC perturbations and GFS analyses were introduced to ICs
for both the 15- and 3-km domains in the EnKF1Global
experiments. For these experiments, expressions for the
15-km domain’s ICs are analogous to those for the 3-km
domain’s ICs given in Table 4, except x3km and dx3kmi are
replaced by x15km and dx15kmi , respectively; GFS and GEFS
fields are downscaled onto the 15-km domain; and there is no
need to downscale 15-km fields.

3) ICS BASED SOLELY ON GLOBAL FIELDS

The final set of ICs for the 3-km domain was produced by
re-centering downscaled GEFS IC perturbations about down-
scaled GFS analyses at 0000 UTC (“GFSCent_GEFSPert”;
Tables 3 and 4). These ICs were independent of the limited-
area EnKFs, and the CAE with these ICs served as a bench-
mark for the other CAEs whose ICs relied on limited-area
EnKF analyses (Tables 3 and 4). As per the above discussion,
ICs for the 15-km domain were also produced by re-centering
GEFS IC perturbations about GFS analyses.

While the other eight sets of ICs had nonzero hydrometeor
mixing ratios consistent with the WRF Model, microphysics
variables produced by the GFS and GEFS were incompatible
with the Thompson et al. (2008) microphysics scheme. Accord-
ingly, GFSCent_GEFSPert ICs did not have hydrometeors,
which is typical for WRF Model ICs provided by global analy-
ses (i.e., initial hydrometeor mixing ratios were set to zero).
Thus, a longer spinup relative to the other experiments was
expected during model integration, which should be recalled
when interpreting verification statistics.

d. CAE forecasts

At 0000 UTC daily between 25 April and 20 May 2017
(inclusive), members 1–10 from all nine sets of ICs (i.e.,
section 3c; Tables 3 and 4) initialized 36-h forecasts over the
nested domain (Fig. 1); there were 26 10-member CAE fore-
casts per experiment. These 36-h forecasts employed identical
WRF Model configurations as the nested 15-/3-km EnKF DA
system (Table 2).

Although ICs for more than 10 ensemble members were
available, computing constraints limited 36-h CAE forecasts
to 10 members, which can be considered as sufficient to pro-
vide skillful and valuable probabilistic precipitation forecasts
(e.g., Clark et al. 2011, 2018; Schwartz et al. 2014) and is com-
parable to ensemble sizes of other CAEs that operate regu-
larly over the CONUS (e.g., Dowell et al. 2016, 2022; Roberts
et al. 2020).

For all 36-h forecasts, perturbation members 1–10 from
the GEFS provided LBCs for the 15-km domain, which in
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turn provided LBCs for the 3-km nest. The 3-km forecasts
were then verified with a focus on precipitation, as described
next.

4. Precipitation forecast verification

a. Methods

As this study builds upon S21, overall methods for precipi-
tation verification closely followed S21, which can be con-
sulted for additional details. Specifically, forecasts of 1-h
accumulated precipitation were objectively verified against
NCEP’s ∼4.8-km Stage IV (ST4) analyses (Lin and Mitchell
2005) over the CONUS east of 1058W (Fig. 1), where ST4
analyses are most reliable (e.g., Nelson et al. 2016). Precipita-
tion forecasts were interpolated to the ST4 grid with a bud-
get algorithm that conserves total precipitation (Accadia et al.
2003) for comparison to ST4 analyses. As in S21, we focus on
precipitation for brevity and because numerical precipitation
forecasts depend on many physical processes, providing a
good summary of model performance. Moreover, precipita-
tion is commonly used to verify CAEs.

Following S21, we used percentile thresholds (e.g., the
95th percentile), rather than absolute thresholds (e.g.,
1.0 mm h21), to define events. Using percentile thresholds
removes bias, permitting a robust assessment of spatial place-
ment within the context of a model’s climate (e.g., Roberts
and Lean 2008; Mittermaier and Roberts 2010; Dey et al.
2014; Gowan et al. 2018; Cafaro et al. 2021). We used the
95.0th, 97.5th, 99.0th, 99.5th, 99.75th, and 99.9th percentile
thresholds to examine a range of precipitation intensities. To
facilitate interpretation of subsequent verification statistics,
Table 5 shows the average physical thresholds corresponding
to the percentile thresholds over the first 12 h. Average
physical thresholds for the CAEs were broadly similar to ST4
physical thresholds, although there was a tendency for over-
prediction at the 99.5–99.9th percentiles and underprediction
at the 95.0th and 97.5th percentiles, with GFSCent_GEFSPert
physical thresholds lowest due to its slower spinup.

Additionally, rather than verifying point-based probabili-
ties, we used a neighborhood approach to derive and verify
“neighborhood ensemble probabilities” (NEPs; Schwartz
et al. 2010; Schwartz and Sobash 2017), which were com-
puted by spatially averaging point-based probabilities
within circular neighborhoods surrounding each grid point.
NEPs are more appropriate for verifying CAE forecasts
than point-based probabilities because they recognize that
high-resolution NWP models are inaccurate at the grid scale
(e.g., Theis et al. 2005; Ebert 2008, 2009). We constructed
NEPs with neighborhood length scales (r) between 5 and
150 km.

Statistical significance was assessed with a bootstrap
resampling approach (with replacement) applied to pairwise
differences between two experiments (e.g., Hamill 1999;
Wolff et al. 2014) using 10 000 resamples, which were ran-
domly drawn from daily statistics as in S21. Significance lev-
els were determined as the percentile where the distribution
of resampled differences equaled zero (e.g., Davis et al.

2010; Schwartz 2016; Lu et al. 2017; Zhang 2021), with signif-
icance levels $ 90% regarded as statistically significant.

b. Results

Probabilistic precipitation forecasts from the nine CAEs
were evaluated with fractions skill scores [FSSs; Roberts and
Lean (2008)], attributes diagrams (e.g., Wilks 2011), and areas
under the relative operating characteristic (ROC) curve
(Mason 1982; Mason and Graham 2002). Both FSSs and ROC
areas range between 0 and 1, with higher values indicating
more skill, while perfect reliability is achieved for curves lying
on the diagonal of attributes diagrams. We also evaluated the
Brier score (Brier 1950), which provided identical conclusions
as FSSs and ROC areas and is not further discussed. How-
ever, the “reliability component” of the Brier score decompo-
sition (BSREL; Murphy 1973) was useful for elucidating
aspects of reliability that were sometimes challenging to visu-
ally glean from attributes diagrams, so values of BSREL are
presented. Smaller values of BSREL are better.

These metrics were computed for NEPs constructed with
r 5 5, 25, 50, 75, 100, 125, and 150 km, but varying r did not
change overall conclusions, as shown in appendix B. Thus, we
focus on statistics computed with r 5 100 km, which was
approximately the smallest r where, over the first 12 h, near-
perfect reliability was obtained for some thresholds and FSSs
achieved “useful” skill [per Roberts and Lean (2008)] at
all thresholds for the best performing CAEs. To provide a
holistic assessment, we present statistics aggregated over all
26 forecasts.

1) CAE FORECAST SENSITIVITY TO CENTRAL

INITIAL STATES

Given identical IC perturbations, CAEs with 3-km central
initial states typically had higher aggregate FSSs over the first
∼12–21 h than CAEs with 15-km central initial states, which
in turn had higher FSSs than CAEs with GFS central initial

TABLE 5. Average physical thresholds (mm h21) corresponding
to the 95.0th, 97.5th, 99.0th, 99.5th, 99.75th, and 99.9th percentile
thresholds over all 26 1–12-h, 3-km forecasts of 1-h accumulated
precipitation, computed over the CONUS east of 1058W. For
the ensembles, percentiles were calculated separately for each
member. Values in the table are averages over all 10 members.

Percentile threshold

95.0 97.5 99.0 99.5 99.75 99.9

Expt 3kmCent_3kmPert 0.9 1.9 4.1 6.6 9.7 14.2
3kmCent_15kmPert 0.9 1.9 4.2 6.6 9.7 14.4
3kmCent_GEFSPert 0.9 1.9 4.2 6.7 9.9 14.5
15kmCent_3kmPert 1.0 2.1 4.5 7.1 10.2 14.7
15kmCent_15kmPert 1.0 2.0 4.5 7.1 10.3 15.0
15kmCent_GEFSPert 1.0 2.1 4.5 7.2 10.4 15.2
GFSCent_3kmPert 1.0 2.0 4.3 6.7 9.7 14.2
GFSCent_15kmPert 1.0 2.0 4.2 6.7 9.8 14.4
GFSCent_GEFSPert 0.8 1.7 3.9 6.3 9.3 13.8
Stage IV analyses 1.1 2.2 4.2 6.3 8.9 13.0
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states (cf. purple, orange, and green curves with common line
patterns in Fig. 6). These relationships held at all thresholds
and differences were regularly statistically significant at the
90% confidence level, particularly those between CAEs with
15- and 3-km central initial states and CAEs with 3-km and
GFS central initial states (Fig. 7). Aggregate ROC areas over
the first 12 h yielded identical conclusions as FSSs (Fig. 8),
and statistical significance between pairs of experiments for
ROC areas echoed patterns in Fig. 7 (not shown). Moreover,
for constant IC perturbations, CAEs with 3-km central initial
states usually had better 1–12-h forecast reliabilities than
CAEs with 15-km central initial states, and CAEs with GFS
central initial states typically had the poorest reliabilities
(Fig. 9, Table 6). All CAEs had comparable sharpness and
were typically skillful compared to climatological forecasts
(Fig. 9). The consistency of FSSs, ROC areas, and reliabilities
through 12 h strongly suggests that short-term CAE precipita-
tion forecasts are improved by using convection-allowing
analyses as central initial states.

Conversely, after ∼18–21 h, differences between CAEs
were generally smaller, with the largest differences occurring

after ∼30 h at the 95th and 97.5th percentile thresholds, where
CAEs with GFS central initial states exhibited a local increase
in FSSs and were more skillful than CAEs with 15- and 3-km
central initial states given fixed IC perturbations (Figs. 6a,b).
Additionally, at higher thresholds, GFS central initial states
typically led to the best ∼22–26-h forecasts (Figs. 6c–f). ROC
areas and attributes statistics after ∼18 h yielded similar
results as FSSs (not shown). As S20 found that CAE forecasts
were sensitive to ICs through 48 h over an identical computa-
tional domain, we do not believe LBC influences were
responsible for relatively smaller differences between the
experiments after ∼18–21 h.

Overall, benefits of convection-allowing central initial
states were mostly confined to the first ∼12 h, consistent
with S21, who found that GEFS-initialized CAEs had
better ∼18–36-h precipitation forecasts than CAEs with
15- and 3-km EnKF ICs due to improved large-scale repre-
sentation in GEFS ICs compared to limited-area EnKF
analyses. We thus presume that large scales, which are
more critical for next-day (i.e., ∼18–36-h) forecasts than
shorter-term forecasts, were better represented in GFS

FIG. 6. Fractions skill scores (FSSs) over the CONUS east of 1058W (Fig. 1) with a 100-km neighborhood length scale for the (a) 95th,
(b) 97.5th, (c) 99th, (d) 99.5th, (e) 99.75th, and (f) 99.9th percentile thresholds aggregated over all 26 3-km forecasts of 1-h accumulated
precipitation as a function of forecast hour. Values on the x axis represent ending forecast hours of 1-h accumulation periods (e.g., an
x-axis value of 24 is for 1-h accumulated precipitation between 23 and 24 h). The y-axis scales are different in each panel.
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analyses than in limited-area EnKF ICs. Because these gen-
eral ∼18–36-h forecast behaviors were exhaustively dis-
cussed by S21, we henceforth focus on ∼1–12-h forecasts,
where differences among the CAEs were usually the largest.
However, some thoughts about how our findings enhance
S21’s conclusions about ∼18–36-h forecast quality are pro-
vided in section 5d.

2) CAE FORECAST SENSITIVITY TO IC PERTURBATIONS

CAE precipitation forecast sensitivity to IC perturbations
somewhat depended on the central initial state. For example,
given identical 3-km central initial states, 3-km IC perturba-
tions rarely yielded better CAE forecasts than 15-km IC per-
turbations over the first 12 h (cf. solid and long-dashed purple
curves in Figs. 8–10; also see Table 6 and the top row of each
panel in Fig. 11). But, when the CAEs had common GFS or

15-km central initial states, there were more instances where
3-km IC perturbations led to better forecasts than 15-km IC
perturbations (Figs. 8–10; also see Table 6 and the second and
third rows from the top of each panel in Fig. 11). Overall, any
benefits of decreasing IC perturbation horizontal grid spacing
from 15 to 3 km were reserved for situations where central
initial states had convection-parameterizing horizontal grid
spacing. There were no consistent benefits of 3-km IC pertur-
bations relative to 15-km IC perturbations when CAEs had
demonstrably preferable 3-km central initial states.

However, 1–12-h forecasts with 3-km IC perturbations were
usually better than those with GEFS IC perturbations when
holding central initial states constant (e.g., compare solid and
short-dashed curves with common colors in Figs. 8 and 10; also
note the middle third of each panel in Fig. 11 has more statisti-
cally significant differences than the top third). CAEs with

FIG. 7. Statistical significance levels of aggregate FSS differences (e.g., Fig. 6) between various experiments for the (a) 95th, (b) 97.5th,
(c) 99th, (d) 99.5th, (e) 99.75th, and (f) 99.9th percentile thresholds for forecast hours 1–12 as determined through bootstrap resampling
(section 4a). These comparisons assess the impact of changing central initial state resolution. Specifically, in each panel, a given row repre-
sents a fixed set of IC perturbations; “3kmPert,” “15kmPert,” and “GEFSPert” refer to IC perturbations provided by 3-km EnKF analysis
ensembles, 15-km EnKF analysis ensembles, and GEFS ICs, respectively. Each panel is broken into thirds to represent different compari-
sons, and pink text denotes the experiment in each comparison with the higher-resolution central initial state. The top third compares
experiments with 15- and 3-km central initial states (“3kmCent vs 15kmCent”). The middle third compares experiments with 3-km and
0.258 GFS central initial states (“3kmCent vs GFSCent”). The bottom third compares experiments with 15-km and 0.258 GFS central ini-
tial states (“15kmCent vs GFSCent”). Pink shadings indicate that higher-resolution central initial states led to statistically significantly
higher FSSs for the fixed IC perturbations, while green shadings indicate that lower-resolution central initial states led to statistically signif-
icantly higher FSSs for the fixed IC perturbations. White cells indicate that aggregate FSSs of two experiments with varied central initial
states but common IC perturbations were not statistically significantly different at the 90% confidence level or higher. Annotations to the
right of (f) represent the number of occurrences where, for the given row, experiments with higher-resolution central initial states had sta-
tistically significantly higher FSSs than experiments with lower-resolution central initial states across all six percentile thresholds and all
forecast hours (i.e., the total number of pink-shaded boxes in each row across all six panels).
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15-km IC perturbations also typically outperformed CAEs
with GEFS IC perturbations given common central initial
states (Figs. 8 and 10; also see the bottom third of each panel
in Fig. 11). The greatest benefit of 15- and 3-km EnKF IC per-
turbations compared to GEFS IC perturbations occurred
when GFS analyses provided central initial states (e.g., see the
sixth row from the top and bottom row of each panel in
Fig. 11), illustrating that combining EnKF-based IC perturba-
tions with GFS analyses is preferable to employing purely
global ICs. Moreover, differences between CAEs with 15- and
3-km IC perturbations were generally smaller than differences
between CAEs with EnKF- and GEFS-based IC perturba-
tions, consistent with GEFS IC perturbations possessing very
different spectral characteristics (Fig. 4) and spread (Fig. 5)
than the two sets of EnKF IC perturbations, which resembled
each other in many ways (Figs. 4 and 5).

Short-term precipitation forecast sensitivity to IC perturba-
tions appeared to have some association with forecast evolu-
tion of small-scale perturbations, which exert greater control

on short-term forecasts than large-scale perturbations. For
instance, given 3-km central initial states, the CAE with
15-km IC perturbations quickly spunup fine-scale structures
and had nearly identical perturbation spectra to the CAE
with 3-km IC perturbations at scales , 100 km by 3 h
(Figs. 12a,b). This fast spinup of small-scale structures from
15-km IC perturbations may be related to why CAEs with
15- and 3-km IC perturbations had similar short-term precipi-
tation forecast skill given common 3-km central initial states
(e.g., Figs. 8–11).

Similarly, the CAE with GEFS IC perturbations and 3-km
central initial states also quickly spunup perturbations at
scales , 100 km over the first 3 h. However, some differences
between CAEs with GEFS and limited-area EnKF IC pertur-
bations remained through 6 h (Figs. 12a–c), consistent with
most statistically significant differences regarding precipita-
tion forecast skill between CAEs with EnKF and GEFS IC
perturbations occurring before 6 h (see the fourth and seventh
rows from the top of each panel in Fig. 11). By 12 h, all three

FIG. 8. As in Fig. 6, but for areas under the relative operating characteristic (ROC) curve computed using decision thresholds of 1%,
2%, 3%, 4%, 5%, 10%, 15%, … , 95%, and 100% and a trapezoidal method. Only forecast hours 1–12 are presented to zoom-in on the
period with the largest systematic differences between experiments and to more easily visualize differences between CAEs with identi-
cal central initial states but different IC perturbations (which have common line colors but different line patterns). The y-axis scales are
different in each panel.
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CAEs with 3-km central initial states had similar perturbation
spectra at scales , 800 km (Fig. 12d), consistent with little
precipitation forecast sensitivity to IC perturbations after 12 h
(e.g., see purple curves in Fig. 6). Similar spectral evolutions
occurred over the first 12 h for other meteorological variables
(not shown).

These results echo previous studies indicating that small-
scale (e.g.,,100 km) perturbations quickly develop from rela-
tively coarse ensemble ICs once high-resolution model inte-
gration commences (e.g., Harnisch and Keil 2015; Tennant
2015; Johnson and Wang 2016; Raynaud and Bouttier 2016;
Potvin et al. 2017; JW20). These findings are also commensu-
rate with hypotheses that large-scale perturbations are impor-
tant drivers of error growth (e.g., Durran and Gingrich 2014),
as the absence of small-scale perturbations in GEFS ICs
(Fig. 4) did not seem to fundamentally limit error growth in
CAEs with GEFS IC perturbations (Fig. 12).

3) OVERALL SENSITIVITIES OF SHORT-TERM CAE
FORECASTS

Considering all nine CAEs, those with 3-km central initial
states usually had better 1–12-h precipitation forecasts than
CAEs with 15-km central initial states, which in turn were typi-
cally better than CAEs with GFS central initial states, regardless
of IC perturbations (e.g., Figs. 8–10; Table 6; note that all purple
curves are usually above all orange curves, which are usually
above all green curves in Figs. 8 and 10). The only systematic
exception occurred at forecast hour 1, where the five CAEs with
at least one 3-km IC component had the five best forecasts, sug-
gesting that information content at convection-allowing scales
provided by either central initial states or IC perturbations is
helpful for the shortest forecasts. However, skill in the CAEs with
3-km IC perturbations and GFS or 15-km EnKF central initial
states (i.e., 15kmCent_3kmPert and GFSCent_3kmPert) dimin-
ished between hours 1–2, sometimes rapidly (Figs. 8 and 10).

FIG. 9. Attributes diagrams computed over the CONUS east of 1058W (Fig. 1) with a 100-km neighborhood length scale aggregated
over all 26 1–12-h 3-km forecasts of 1-h accumulated precipitation for the (a) 95th, (b) 97.5th, (c) 99th, (d) 99.5th, (e) 99.75th, and
(f) 99.9th percentile thresholds. Horizontal lines near the x axis represent observed frequencies of the event, diagonal lines are lines of per-
fect reliability, and forecast frequencies (%) within each probability bin are shown as open circles (all nine CAEs had very similar proba-
bility distributions, so the circles lie atop each other). Points lying in gray-shaded regions had skill compared to climatological forecasts as
measured by the Brier skill score (Brier 1950; Wilks 2011). Values were not plotted for a particular bin if fewer than 500 grid points had
forecast probabilities in that bin over the CONUS east of 1058W and all 26 forecasts.
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Forecast skill characteristics over the first 2 h in 15kmCent_3km-
Pert andGFSCent_3kmPert appear related to precipitation spinup.
For instance, given GFS and 15-km central initial states, 3-km
IC perturbations led to the most domain-total precipitation at
forecast hour 1 (Fig. 13). Adding 3-km perturbations to rela-
tively coarser GFS and 15-km fields led to imbalances and

gravity wave generation; the small-scale perturbations likely
acted as noise that stimulated precipitation development.
Although the greater domain-total precipitation resulting
from 3-km IC perturbations did not always agree well with
observed domain-total precipitation (e.g., see the solid orange
line in Fig. 13), these enhanced precipitation elements were

FIG. 10. As in Fig. 6, but zoomed-in over the first 12 forecast hours to more easily visualize differences between CAEs with identical
central initial states but different IC perturbations (which have common line colors but different line patterns).

TABLE 6. Reliability component of the Brier score decomposition (Murphy 1973; smaller is better) aggregated over all 26 1–12-h,
3-km forecasts of 1-h accumulated precipitation for various percentile thresholds, computed over the CONUS east of 1058W (Fig. 1)
with a 100-km neighborhood length scale. These values correspond to the curves in Fig. 9.

Percentile threshold

95.0 97.5 99.0 99.5 99.75 99.9

Expt 3kmCent_3kmPert 0.000 342 0.000 434 0.000 507 0.000 551 0.000 577 0.000 596
3kmCent_15kmPert 0.000 359 0.000 442 0.000 505 0.000 548 0.000 575 0.000 595
3kmCent_GEFSPert 0.000 351 0.000 433 0.000 504 0.000 543 0.000 573 0.000 596
15kmCent_3kmPert 0.000 347 0.000 445 0.000 521 0.000 553 0.000 577 0.000 598
15kmCent_15kmPert 0.000 345 0.000 448 0.000 526 0.000 555 0.000 577 0.000 597
15kmCent_GEFSPert 0.000 348 0.000 446 0.000 527 0.000 561 0.000 582 0.000 600
GFSCent_3kmPert 0.000 363 0.000 434 0.000 524 0.000 558 0.000 578 0.000 597
GFSCent_15kmPert 0.000 364 0.000 450 0.000 529 0.000 562 0.000 581 0.000 597
GFSCent_GEFSPert 0.000 415 0.000 496 0.000 565 0.000 582 0.000 591 0.000 602
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often placed correctly, given that ROC areas and FSSs were greatly
improved at forecast hour 1 by adding 3-km IC perturbations,
rather than GEFS or 15-km IC perturbations, to GFS and 15-km
central initial states (Figs. 8 and 10). Between 1 and 2 h, domain-
total precipitation in 15kmCent_3kmPert and GFSCent_3kmPert
decreased as imbalances were resolved (Fig. 13), which is consistent
with the sometimes precipitous decline of skill in these two experi-
ments over this period (Figs. 8 and 10) and epitomizes the domi-
nant influence of central initial states for short-term forecast
evolution. Overall, after 3–6 h, domain-total precipitation pro-
vided similar conclusions as other metrics: for a fixed central ini-
tial state GEFS IC perturbations produced forecasts that were
typically furthest from observations, 15- and 3-km IC perturba-
tions added to 3-km central initial states yielded comparable
performance, and CAEs with 3-km central initial states were
usually closest to observations regardless of IC perturbations.

Furthermore, differences between CAEs with identical IC
perturbations but different central initial states were statistically

significant more often than differences between CAEs with
identical central initial states but varied IC perturbations (cf.
Figs. 7 and 11). Most importantly, the four EnKF-only experi-
ments (bold experiments in Table 3) clearly revealed that CAEs
with 3-km central initial states were statistically significantly bet-
ter than CAEs with 15-km central initial states (given constant
IC perturbations) more often than CAEs with 3-km IC pertur-
bations were statistically significantly better than CAEs with
15-km IC perturbations (given constant central initial states;
compare the top two rows of each panel in Figs. 7 and 11).

Therefore, collective findings strongly suggest it is more impor-
tant that central initial states possess convection-allowing horizon-
tal grid spacing than IC perturbations for short-term CAE
precipitation forecasts. These results imply that small-scale struc-
tures in central initial states help to define a more accurate enve-
lope within which ensemble members’ short-term forecasts evolve.

A consequence of these findings is that deterministic fore-
casts initialized from central initial states (e.g., EnKF mean

FIG. 11. As in Fig. 7, but for different comparisons that assess the impact of changing IC perturbation resolution. Specifically, in each
panel, a given row represents a fixed set of central initial states; “3kmCent,” “15kmCent,” and “GFSCent” refer to central initial states
provided by 3-km EnKF ensemble mean analyses, 15-km EnKF ensemble mean analyses, and GFS analyses, respectively. Each panel is
broken into thirds to represent different comparisons, and pink text denotes the experiment in each comparison with the higher-resolution
IC perturbations. The top third compares experiments with 15- and 3-km IC perturbations (“3kmPert vs 15kmPert”). The middle third
compares experiments with 3-km and 0.58 GEFS IC perturbations (“3kmPert vs GEFSPert”). The bottom third compares experiments
with 15-km and 0.58 GEFS IC perturbations (“15kmPert vs GEFSPert”). Pink shadings indicate that higher-resolution IC perturbations
led to statistically significantly higher FSSs for the fixed central initial state, while green shadings indicate that lower-resolution IC pertur-
bations led to statistically significantly higher FSSs for the fixed central initial state. White cells indicate that aggregate FSSs of two experi-
ments with varied IC perturbations but common central initial states were not statistically significantly different at the 90% confidence
level or higher. Annotations to the right of (f) represent the number of occurrences where, for the given row, experiments with higher-
resolution IC perturbations had statistically significantly higher FSSs than experiments with lower-resolution IC perturbations across all
six percentile thresholds and all forecast hours (i.e., the total number of pink-shaded boxes in each row across all six panels).
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analyses) can potentially be used as proxies for CAE forecasts
at 1/M the cost of anM-member CAE. As evidence of this pos-
sibility, comparison of deterministic forecasts initialized from
GFS, 3-km EnKF mean, and 15-km EnKF mean analyses over
the nested domain (Fig. 1) yielded identical conclusions as com-
parisons of 10-member CAEs solely differing by their central
initial states: over the first ∼12–21 h, 3-km EnKF mean analyses
yielded the best forecasts and GFS analyses the worst, whereas
forecasts initialized from GFS analyses were comparable to or
better than those initialized from limited-area EnKF analyses
after ∼18–24 h (Fig. 14). Therefore, CAE developers may only
need to initialize deterministic forecasts from central initial
states during portions of experimentation, potentially saving
resources and enabling trials over longer time periods.

5. Discussion

a. Connection to dual-resolution ensemble–variational
DA systems

Our results are broadly consistent with, but not directly
comparable to, previous work that examined deterministic

forecasts initialized from ensemble–variational (EnVar) DA
systems (e.g., Hamill and Snyder 2000; Lorenc 2003; Wang
et al. 2008; Wang 2010) with “dual-resolution” configurations,
where a comparatively low-resolution ensemble provides
background error covariances (BECs) for a relatively higher-
resolution deterministic background.8 Specifically, several
studies noted that deterministic forecasts were improved
when increasing resolution of the deterministic background
while holding ensemble perturbation resolution constant
(e.g., Schwartz 2016; Lu et al. 2017; Pan et al. 2018; Wang et al.
2019). Conversely, studies isolating sensitivity to perturbation
(i.e., BEC) resolution in dual-resolution EnVar DA systems

FIG. 12. Average 250-hPa zonal wind perturbation energy (m2 s22) over all 26 3-km forecasts and all 10 ensemble
perturbations as a function of wavelength (km) for the three CAEs with 3-km central initial states for (a) analyses
(0-h forecasts) and (b) 3-, (c) 6-, and (d) 12-h forecasts. Perturbations were defined with respect to the ensemble
mean, and spectra were computed over the entire 3-km domain (Fig. 1), excluding points within 45 km of each lateral
boundary. The discrete cosine transform (Denis et al. 2002) was used to compute spectra and spectral variance
binning employed the method of Ricard et al. (2013).

8 Incremental four-dimensional variational (4DVAR) DA sys-
tems (Courtier et al. 1994) can also employ dual-resolution con-
cepts by obtaining innovations from a high-resolution nonlinear
model while inner loop minimizations use low-resolution formula-
tions of tangent linear and adjoint models (e.g., Liu et al. 2020).
Our discussion does not concern pure 4DVAR systems, but
rather, solely EnVar DA systems where “dual resolution” refers
to disparities in resolution among ensemble-based BECs and a
deterministic background.
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have yielded mixed results and provide scant overall evidence
that BECs coarser than the deterministic background system-
atically degrade subsequent forecasts (e.g., Schwartz et al.
2015b; Schwartz 2016; Lei and Whitaker 2017; Bédard et al.
2018, 2020; Kay and Wang 2020). Furthermore, some ensem-
ble-based DA systems use simpler procedures to update
ensemble perturbations relative to methods for updating
deterministic backgrounds, finding few adverse impacts from
the simplifications and implicitly acknowledging the overrid-
ing importance of central states (e.g., Buehner et al. 2017;
Lorenc et al. 2017; Bédard et al. 2018). Therefore, past
research collectively suggests that ensemble perturbation res-
olution likely has secondary importance relative to resolution
of deterministic backgrounds in dual-resolution EnVar DA
systems, consistent with our results for short-term CAE
forecasts.

However, most previous studies assessing sensitivity of dual-
resolution EnVar analyses to BEC resolution focused on DA
systems at convection-parameterizing scales, and when it
comes to understanding BEC resolution requirements for con-
vective-scale DA applications, there is substantial uncertainty.
Nonetheless, there are likely situations where convection-
parameterizing BECs cannot provide relevant spatiotemporal
details about small-scale features represented in convection-
allowing EnVar backgrounds, potentially leading to subopti-
mal analyses. Thus, while it may be unnecessary to initialize
CAE “free forecasts” with convection-allowing IC perturba-
tions, it is conceivable that convection-allowing BECs are in

fact critical to producing optimal convection-allowing analyses.
Future studies should investigate this topic to better under-
stand whether BEC resolution can be degraded without also
degrading convective-scale EnVar analyses.

b. Theoretical aspects

Our findings are limited by the effectiveness of Gaussian-
based DA methodologies, like the EnKF, to effectively repre-
sent posterior means and perturbations at various spatial res-
olutions. For example, in a highly idealized scenario, Posselt
and Bishop (2012) suggested that given non-Gaussian priors
(states before assimilation), EnKFs reasonably represent pos-
terior means (i.e., central initial states) but poorly estimate
posterior covariances (i.e., IC perturbations). This deficiency
can directly limit forecast performance of convective-scale
NWP systems that use EnKFs (Poterjoy et al. 2017, 2019).
Assuming that 3-km EnKF priors were more non-Gaussian
than 15-km EnKF priors, our findings are consistent with past
research: benefits of decreasing central initial state horizontal
grid spacing from 15 to 3 km suggest reliable EnKF updates
for the mean at all scales, while lack of benefits from decreas-
ing IC perturbation horizontal grid spacing from 15 to 3 km
suggests the 3-km EnKF may not properly represent convec-
tive-scale posterior covariances. These concepts are consistent
with the discussion in section 5a and may provide a theoretical
basis for using dual-resolution DA systems to initialize CAEs.

c. Similarities with JW20

In general, our results corroborate JW20’s findings that 3-km
IC perturbations lead to better short-term CAE forecasts than
0.58 GEFS IC perturbations given 3-km central initial states,
and, together with JW20’s conclusions, suggest that approxi-
mately 12 h represents an upper bound on forecast ranges for
which convection-allowing IC perturbations are beneficial. As
there were meaningful differences between JW20 and our study
(e.g., JW20 used a 40-member partial cycling EnVar/EnKF DA
system while we used an 80-member continuously cycling
EnKF), these collective findings concerning 3-km versus 0.58
GEFS IC perturbations appear robust.

Additional experiments in JW20 suggested these results
were due to missing small-scale structures in GEFS IC pertur-
bations, rather than the myriad other differences between
GEFS IC perturbations and IC perturbations provided by
limited-area 3-km WRF-based DA systems, like physical
parameterizations. However, our findings that 3-km IC per-
turbations did not lead to better precipitation forecasts than
15-km IC perturbations given common 3-km central initial
states suggest a point of diminishing returns for increasing IC
perturbation resolution.

d. Further insights into S21

Comparison of the EnKF-only experiments (bold experi-
ments in Table 3) indicates that S21’s 3-km EnKF initialized
better 6–12-h forecasts than their 15-km EnKF due to
increased resolution of its central initial state, not because of
finer-resolution IC perturbations. Furthermore, S21 noted
that ICs produced by “blending” small scales from 3-km

FIG. 13. Average 1-h accumulated precipitation (mm) per grid
point over all 26 3-km forecasts and the CONUS east of 1058W
(Fig. 1), computed on native grids as a function of forecast hour.
These statistics were computed for all 10 ensemble members, but
for readability, only ensemble means are shown. Values on the x
axis represent ending forecast hours of 1-h accumulation periods
(e.g., an x-axis value of 9 is for 1-h accumulated precipitation
between 8 and 9 h). At forecast hours 1 and 2, GFSCent_GEF-
SPert domain-total precipitation was nonzero but below the x axis.
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EnKF analysis members with large scales from corresponding
GEFS IC members led to better ∼18–36-h CAE forecasts
than ICs provided by unblended 3-km EnKF analysis ensem-
bles (i.e., x3kmi ). However, because individual members from
3-km EnKF and GEFS IC ensembles were blended (i.e., x3kmi

and xGEFS
i were blended for the ith member to create new

ICs), S21 could not assess whether changing the large-scale
central initial state or the large-scale IC perturbations was
responsible for the success of blending.

Although we did not perform experiments to explicitly
examine the impact of modifying large-scale central initial
states and IC perturbations, our experiments nonetheless pro-
vide some insights on S21’s findings. Specifically, after ∼30 h
at the 95th and 97.5th percentile thresholds (Figs. 6a,b) and

between ∼22 and 26 h at higher thresholds (Figs. 6c–f), CAEs
with GFS central initial states outperformed CAEs with
EnKF central initial states regardless of IC perturbation reso-
lution. Moreover, ∼18–36-h forecast sensitivity to using global
IC perturbations was relatively modest: given 3-km central
initial states, while employing GEFS IC perturbations some-
times boosted 30–36-h FSSs compared to using 15- or 3-km
IC perturbations, much bigger performance gains were
realized by changing central initial states to GFS analyses
(Figs. 6a,b).

Therefore, ∼18–36-h forecasts were improved most by
using central initial states provided by a global model. This
finding suggests that S21’s blended 3-km ICs yielded better
next-day forecasts than unblended 3-km ICs because of

FIG. 14. Fractions skill scores (FSSs) over the CONUS east of 1058W (Fig. 1) with a 100-km neighborhood length scale aggregated over
all 26 forecasts of 1-h accumulated precipitation for deterministic 3-km forecasts initialized from 3-km EnKF mean analyses (purple),
15-km EnKF mean analyses (orange), and GFS analyses (green) for the (a) 95th, (b) 97.5th, (c) 99th, (d) 99.5th, (e) 99.75th, and
(f) 99.9th percentile thresholds as a function of forecast hour. Values on the x axis represent ending forecast hours of 1-h accumulation peri-
ods (e.g., an x-axis value of 24 is for 1-h accumulated precipitation between 23 and 24 h). Symbols along the top axis denote instances where
differences between two forecasts were statistically significant at the 95% level as determined through bootstrap resampling (section 4a),
with the three rows of colored symbols corresponding to the three comparisons in the legend to denote which forecast had statistically signif-
icantly higher FSSs. For example, in the middle row, purple symbols indicate the forecasts with ICs provided by 3-km EnKF mean analyses
had statistically significantly higher FSSs than forecasts with ICs provided by GFS analyses, while green symbols indicate forecasts with ICs
provided by GFS analyses had statistically significantly higher FSSs than forecasts with ICs provided by 3-km EnKF mean analyses.
Absence of a symbol means the differences were not statistically significant at the 95% level. The y-axis scales are different in each panel.
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forcing large-scale central initial states to global model large
scales during blending, rather than forcing large-scale IC per-
turbations to those provided by a global model. It thus seems
more critical to accurately depict large-scale central initial
states than large-scale IC perturbations for next-day CAE
forecasts.

6. Summary and conclusions

Nine sets of 36-h, 10-member CAE forecasts were pro-
duced over the CONUS for a 4-week period spanning April–
May 2017. The various CAEs differed solely with regard to
their central initial states and IC perturbations (Tables 3
and 4) and were verified with a focus on precipitation east of
the Rockies.

When holding IC perturbations constant, CAE precipita-
tion forecasts over the first ∼12 h were best when central ini-
tial states were provided by 3-km EnKF mean analyses,
rather than GFS or 15-km EnKF mean analyses. Thus, short-
term CAE forecasts clearly benefited when central initial
states possessed convection-allowing horizontal grid spacing.

However, when holding these optimal 3-km central initial
states constant and varying IC perturbations, there were no
systematic benefits of decreasing IC perturbation horizontal
grid spacing from 15 to 3 km, although 3-km IC perturbations
typically led to better short-term CAE forecasts than GEFS
IC perturbations.

Overall, considering all nine CAEs, in aggregate, the three
with 3-km central initial states produced better short-term
precipitation forecasts than CAEs with GFS or 15-km central
initial states, regardless of IC perturbations. Therefore, for
short-term CAE forecasting applications, while increasing IC
perturbation resolution to convection-allowing scales can be
helpful in some instances, it is far more important for central
initial states than for IC perturbations to possess convection-
allowing horizontal grid spacing. Consistent with these results,
comparing deterministic forecasts initialized from various
central initial states can provide identical conclusions as com-
paring CAEs solely differing by their central initial states,
potentially saving resources (e.g., Fig. 14). Of course, our find-
ings must be interpreted within the context of this study,
which focused primarily on strongly forced events and used

FIG. A1. As in Fig. 14, but for FSSs with a 100-km neighborhood length scale aggregated over deterministic 3-km forecasts of 1-h accu-
mulated precipitation initialized from 0000 UTC EnKF mean analyses between 25 Apr and 7 May 2017 (inclusive), focusing on experi-
ments designed to assess forecast sensitivity to horizontal localization and observation thinning in 15-km EnKFs.
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EnKF-based IC perturbations limited by their various Gaussian
assumptions. In weakly forced scenarios and with future advan-
ces in non-Gaussian DA methods and NWP models, conclu-
sions could differ.

Nonetheless, given that it appears IC perturbations can be
coarser than central initial states for CAE forecasting applica-
tions, dual-resolution EnVar DA systems may be prime candi-
dates to initialize future CAEs because they can provide
convection-allowing analyses while leveraging relatively coarse,
cheap ensemble perturbations (e.g., Schwartz 2016; Lu et al.
2017). These relatively coarse ensembles could then be re-
centered about convection-allowing deterministic EnVar
analyses to initialize CAE forecasts. Dual-resolution EnKFs
(e.g., Rainwater and Hunt 2013) could also potentially be
developed for CAE initialization. However, further work is
needed to determine whether dual-resolution EnKFs or EnVar
DA systems can produce similar quality analyses as those
provided by single-resolution convection-allowing EnKFs. Thus,
although convection-allowing IC perturbations appear unneces-
sary for CAE forecasts, paradoxically, ensemble-based BECs
possessing convection-allowing horizontal grid spacing could

conceivably be necessary to produce the best possible convection-
allowing central initial states and to leverage the full potential
of high-resolution observations like those derived from radars.

In conclusion, our results suggest scientists working on ini-
tialization of future operational CAEs like the RRFS primar-
ily concentrate their energies on producing the best possible
high-resolution deterministic analyses that can be used as cen-
tral initial states for CAEs. A common focus on this aspect of
CAE ICs across the community can potentially accelerate
progress toward advancing CAE capabilities, thus leading to
better probabilistic weather forecasts.
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FIG. B1. Statistical significance levels of aggregate FSS differences between 3kmCent_3kmPert and 3kmCent_15kmPert for the
(a) 95th, (b) 97.5th, (c) 99th, (d) 99.5th, (e) 99.75th, and (f) 99.9th percentile thresholds for forecast hours 1–12 for different neighborhood
length scales (km) as determined through bootstrap resampling (section 4a). These comparisons assess the impact of changing IC pertur-
bation resolution. Pink shadings indicate that 3kmCent_3kmPert had statistically significantly higher FSSs then 3kmCent_15kmPert, while
green shadings indicate that 3kmCent_15kmPert had statistically significantly higher FSSs than 3kmCent_3kmPert. White cells indicate
that aggregate FSSs of the two experiments were not statistically significantly different at the 90% confidence level or higher. Crosses indi-
cate those forecast hours and neighborhood length scales where the highest aggregate FSS among 3kmCent_3kmPert and
3kmCent_15kmPert was lower than the FSS necessary to achieve “useful” skill, as defined by Roberts and Lean (2008). Annotations to
the right of (f) represent the number of occurrences where, for the given row (i.e., a given neighborhood length scale), 3kmCent_3kmPert
had statistically significantly higher FSSs than 3kmCent_15kmPert across all six percentile thresholds and all forecast hours (i.e., the total
number of pink-shaded boxes in each row across all six panels).
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APPENDIX A

Sensitivity of 15-km EnKFs to Horizontal Localization
and Observation Thinning

Our collective results indicate that centering IC perturba-
tions about 3-km EnKF mean analyses led to better CAE
forecasts than centering IC perturbations about 15-km
EnKF mean analyses. To ensure that these findings were
not attributable to different horizontal localization and
observation thinning between the 15- and 3-km EnKFs
(e.g., Table 1), we ran another continuously cycling 15-km

EnKF. This auxiliary 15-km EnKF (hereafter referred to as
“EnKF_15kmaux”) was identical to the 15-km EnKF described
in section 2 (hereafter referred to as “EnKF_15kmorig”), except
it used smaller horizontal localization and observation thinning
distances that matched those in the 3-km EnKF. This new
EnKF (i.e., EnKF_15kmaux) was continuously cycled between
0000 UTC 23 April and 0000 UTC 7 May 2017 (inclusive) with
a 1-h cycling period. Given that deterministic forecasts initialized
from EnKF mean analyses yielded identical conclusions about
forecast performance as 10-member CAEs [section 4b(3)], we
only initialized 3-km forecasts from EnKF mean analyses pro-
duced by EnKF_15kmaux to save computing resources.

Relative to EnKF_15kmorig, the smaller localization and
assimilation of more aircraft and satellite-tracked wind observa-
tions in EnKF_15kmaux led to closer fits to observations (not
shown) and often increased FSSs at forecast hour 1 (Fig. A1).
However, 1-h precipitation forecasts from EnKF_15kmaux

remained statistically significantly worse than those initial-
ized from 3-km EnKF mean analyses. Moreover, beyond
1 h, EnKF_15kmaux frequently had poorer precipitation
forecasts than EnKF_15kmorig (Fig. A1).

Therefore, different horizonal localization and observation
thinning between EnKF_15kmorig and the 3-km EnKF cannot
explain why CAEs initially centered on 3-km EnKF mean anal-
yses were better than those initially centered on 15-km EnKF
mean analyses. Rather, fundamental differences between the
15- and 3-km EnKFs}horizontal resolution and associated

FIG. B2. As in Fig. B1, but comparing 3kmCent_3kmPert and 15kmCent_3kmPert to focus on the impact of changing central initial
state resolution. Annotations to the right of (f) represent the number of occurrences where, for the given row (i.e., a given neighborhood
length scale), 3kmCent_3kmPert had statistically significantly higher FSSs than 15kmCent_3kmPert across all six percentile thresholds
and all forecast hours (i.e., the total number of pink-shaded boxes in each row across all six panels).
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treatment of convection}were likely the dominant driver of
their differences.

APPENDIX B

Statistical Significance of FSSs as a Function of
Spatial Scale

To demonstrate that our overall conclusions were unaf-
fected by neighborhood length scale (r), we present statisti-
cal significance of aggregate FSS differences between two
pairs of experiments for r between 5 and 150 km (Figs. B1
and B2). Given fixed 3-km central initial states, 3-km IC
perturbations only occasionally led to statistically signifi-
cantly higher FSSs than 15-km IC perturbations through
12 h, regardless of r (Fig. B1). Conversely, given fixed 3-km
IC perturbations, 3-km central initial states frequently led
to statistically significantly higher FSSs than 15-km central
initial states over the first 12 h, again, regardless of r
(Fig. B2). Over the first 1–3 h at the 99.0–99.9th percentile
thresholds, 3-km IC perturbations somewhat more regularly
led to statistically significantly higher FSSs than 15-km IC
perturbations given fixed 3-km central initial states when
reducing r below 100 km (Figs. B1c–f). However, in most
of these instances with statistically significant differences for
r , 100 km, aggregate FSSs were below those associated
with “useful” skill, as defined by Roberts and Lean (2008)
[given by (0.5 1 f0/2), where f0 is the observed event fre-
quency]. Ultimately, for all r, changing the central initial
state led to more statistically significant differences than
changing IC perturbations, echoing conclusions given by
Figs. 7 and 11, and focusing on statistics computed with
r 5 100 km in the main text appropriately represents our
findings.
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